![]() |
个人信息Personal Information
教授
硕士生导师
教师英文名称:Jianhua Liu
教师拼音名称:Liu Jianhua
所在单位:计算机科学与数学学院
职务:曾任教学副院长
学历:研究生(博士)毕业
办公地点:至诚楼2号-619
联系方式:Email:jlhiu@fjnu.edu.cn; Tel:13720834316; QQ:656095080
学位:博士学位
在职信息:在职
主要任职:福建理工大学 信息科学与工程学院副院长; 计算机科学与数学学院副院长;
其他任职:福建省民盟科技委副主任;福建省大数据挖掘与应用技术重点实验室 副主任
毕业院校:中南大学
学科:物联网工程
信息管理与信息系统
软件工程
数据科学与大数据技术
计算机科学与技术
其他联系方式Other Contact Information
邮编 :
传真 :
通讯/办公地址 :
办公室电话 :
移动电话 :
邮箱 :
个人简介Personal Profile
l 简介:博士,教授,硕士生导师。曾任福建工程学院(2023年改为福建理工大学)信息科学与工程学院、计算机科学与数学学院 副院长;福建省大数据挖掘与应用技术重点实验室常务副主任;民主同盟福建省科技委员会副主任;民盟福建理工大学委员会委员;福建省人工智能学会常务理事;澳大利亚皇家墨尔本理工大学(RMIT)访问学者,北京大学信息技术学院访问学者;中国工程教育专业认证专家。
l 学术研究:主要从事智能计算、自然语言处理、机器学习、大数据分析等研究及基于RFID的室内定位系统研发;兴趣领域主要有情感分析、进化算法的理论分析与应用、基于RFID物联网应用。主持参与过国家自然科学基金、国家原子能研究所科研项目、福建省科技厅重点项目、福建省自然科学基金项目、福建省教育厅重点项目等各类项目40余项;在《IEEETran. on Evolutionary Computation》、《Knowledge-Based Systems》、《NearComputing》、《自动化学报》等国内外学术刊物共发表论文近70余篇,其中SCI,EI检索近30余篇,授权专利2件,其中转让专利1件,软件著作授权1件,获福建省自然科学优秀学术论文奖三等奖二项,福建省教学成果奖一项;主持省级教改项目2项,发表教改论文3篇。
l 研究兴趣
1️⃣智能计算与工业优化
² 进化算法创新设计:针对进化算法基本理念与方法,探索算法原理,针对车间调度、能源机组组合等NP难问题,提出混合启发式算法,成果可落地于智能制造企业。
² 时间序列预测系统:针对当前深度学习的先理模型,研究相关序列预测模型,研发基于深度学习的交通流量预测、工业设备故障预警模型。
2️⃣ 自然语言处理前沿技术
² 多模态情感分析:融合文本、语音与视频等多模态信号的情感计算模型,应用于消费心理分析、人机交互优化。
² 医疗文本生成与挖掘:开发大模型驱动的中医案例自动生成、医疗报告结构化系统,探索生成式AI在垂直领域的可信应用。
3️⃣大模型驱动的心理健康与中医现代化
² 心理健康智能分析:基于大模型构建心理状态评估系统,从社交媒体文本、临床对话中识别焦虑、抑郁等风险信号,推动AI在精神健康领域应用。
² 中医知识图谱与智能诊断:利用NLP技术解析中医方剂数据,构建中药-病症关联网络,结合相关数据探索中医药的配伍模式。
n 科研项目
[1] 双模智能控制水龙头关键技术研发与产业化示范 省科技厅-科技型中小企业技术创新资金项目,项目编号: 2022C0022, 2022.9-2024,6 35万 ,企业项目协助方(协助经费3.5万)。帮助企业基于智能化控制提出语音和手势识别技术,提升新产品质量。
[2] 农业灌溉智能水龙头研发, 2023年科技特派员项目-省级科技特派员 福建省洁博利科技有限公司的特派员,指导企业提升洁具相关智能控制技术
[3] 福建省自然科学基金,融合语义特征与图神经网络的方面级情感分析研究,项目编号: 2023J01349, 2023.9-2026.9, 10万,主持
[4] 福州市科技创新平台项目,基于深度预训练模型的新能源汽车驾驶行为数据分析探索,项目编号:2021-P-052, 2021.9-2023.9, 30万,主持
[5] 国家自然科研学基金面上项目,大规模复杂本体匹配方法的研究,项目编号:62172095;2022.1-2025.12, 53万,在研、主要参与者。
[6] 福建省自然科学基金,大规模本体匹配机制研究,项目编号 :2020J01875;2020.10- 2023.12,7万元、在研、主要参与者.
[7] 福建省自然科学基金, 二进制粒子群算法应用于高维特征选择问题的研究,项目编号 :2019J01771;2019.7 -2022.06.30,10万元、在研、主持者.
[8] 国家自然科学基金项目,基于进化算法的大规模本体匹配问题研究,项目编号 :61503082;2016.1 -2018.12, 20万元、在研、主要参与者.
[9] 福建省自然科学基金, 基于拓扑优化的WSN数据汇聚技术研究,项目编号:2017J05098;2017.3- 2020.2, 3万, 在研,主要参与者;
[10] 校科研发展基金,一种基于Hadoop的高效即席查询引擎,项目编号:GY-Z17150; 2017.12-2021.12,4万,在研,主持人。
[11] 福建省自然科学基金,基于进化算法的LOD实例共指消解问题研究,项目编号:2016J0545;2016.3-2019.2;在研,主要参与者;
[12] 福建省自然科学基金,大规模学习问题中平衡学习效率与学习性能的随机策略研究,项目编号:2016J1750;2016.3-2019.2;在研,主要参与者;
[13] 福建省教育厅项目,GPU在无人机遥感影像匹配中的应用,项目编号:JA15335;2015.7-2017.6;在研,参与;
[14] 福建州市科技局项目,基于RFID的人员定位与测距系统的研发,项目编号:2012-G-126;2012.9-2016.12;在研,主要参者;
[15] 福建省科技厅重点项目,基于RFID的隧道施工人员定位系统的研发,项目编号:2012H0002;2012.5 -2015.5; 项目主持人
[16] 福建省科技厅JK类资助省属高校项目,智能交通控制系统的建模及其优化技术,项目编号:JK2012033;2012.9 -2014.8;项目参与者;
[17] 福建省科技厅发展项目, 安全生产管理中环境和设备智能化监测巡检装备与系统研发;项目编号:2016H0001,2016.3-2019.2,15万,项目参与;
[18] 福建省自然科学基金,数据挖掘偏倚取样技术与算法研究,项目编号: 2012J01245;2012.5-2014.5,主要成员;
[19] 福建省自然科学基金,智能优化算法的选择性集成及统一性建模,项目编号:2012J01246;2012.5-2014.5;项目主持人;
[20] 福建省自然科学基金,大规模数据的在线学习技术研究,项目编号:2012J01247;2012.5-2014.5;主要成员;
[21] 福建省科技厅JK类资助省属高校项目,粒子群算法分析及其在交通控制中运用研究,项目编号:JK2011035;2011.9-2013.9; 项目主持人;
[22] 福建工程学院科研启动基金项目,粒子群算法的分析与改进及其在数据挖掘中的应用研究,项目编号:E0600100;2010.6 -2013.9;项目主持
n 发表论文
英文论文
[1] Zhu J, Liu J. A simple and scalable particle swarm optimization structure based on linear system theory[J]. Memetic Computing, 2024: 1-13.(SCI 二区)
[2] Xie Z, Liu J, Hu R, et al. The Application of Adversarial Training Based on Gradient Constraint Optimization Method to Sentiment Analysis[J]. 2024.9(1):538-549(EI收录)
[3] Zhu J, Liu J, Chen Y, et al. Binary Restructuring Particle Swarm Optimization and Its Application[J]. Biomimetics, 2023, 8(2): 266.(SCI 三区)
[4] Chen Y, Liu J, Zhu J, et al. An improved binary particle swarm optimization combing V-shaped and U-shaped transfer function[J]. Evolutionary Intelligence, 2023, 16(5): 1653-1666.(EI)
[5] Liu J, Wang Z, Chen Y, et al. Solving the Unit Commitment Problem with Improving Binary Particle Swarm Optimization[C]//International Conference on Sensing and Imaging. Springer, Cham, 2022: 176-189.
[6] Zhu J, Liu J, Wang Z, et al. Restructuring Particle Swarm Optimization algorithm based on linear system theory[C]//2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2022: 1-7.
[7] Liu J, Wang Z, Chen Y, et al. Solving the Unit Commitment Problem with Improving Binary Particle Swarm Optimization[C]//International Conference on Sensing and Imaging. Springer, Cham, 2022: 176-189.
[8] S Xu, S Sun, Z Zhang, F Xu, J Liu. BERT gated multi-window attention network for relation extraction[J]. Neurocomputing, 2022, 492: 516-529. (SCI二区)
[9] Nguyen, T. T., Wang, H. J., Dao, T. K., Pan, J. S., Liu, J. H., & Weng, S. (2020). An improved slime mold algorithm and its application for optimal operation of cascade hydropower stations. IEEE Access, 8, 226754-226772. (SCI二区)
[10] Luo Y, Liu J, Xue X, et al. The Experimental Analysis on Transfer Function of Binary Particle Swarm Optimization[C]//International Conference on Swarm Intelligence. Springer, Cham, 2021: 254-264.
[11] Zhang D Y, Liu J H, Jiang L, et al. The Improvement of V-Shaped Transfer Function of Binary Particle Swarm Optimization[C]//International Conference on Swarm Intelligence. Springer, Cham, 2020: 202-211.
[12] Jiang L, Liu J, Cui D, et al. A Binary Particle Swarm Optimization with the Hybrid S-Shaped and V-Shaped Transfer Function[C]//International Conference on Genetic and Evolutionary Computing. Springer, Singapore, 2019: 69-77.
[13] Xue X, Liu J. Geo-spatial Ontology Matching Through Compact Evolutionary Algorithm[C]//International Conference on Smart Vehicular Technology, Transportation, Communication and Applications. Springer, Cham, 2018: 11-18.
[14] Xue X, Chen J, Liu J, et al. Matching Biomedical Ontologies Through Compact Evolutionary Simulated Annealing Algorithm[C]//International Conference on Genetic and Evolutionary Computing. Springer, Singapore, 2018: 661-668.
[15] Xue X, Liu J. A compact hybrid evolutionary algorithm for large scale instance matching in linked open data cloud[J]. International Journal on Artificial Intelligence Tools, 2017, 26(04): 1750013.
[16] Xue X, Liu J. Collaborative ontology matching based on compact interactive evolutionary algorithm[J]. Knowledge-Based Systems, 2017, 137: 94-103. (SCI二区)
[17] Xue X, Liu J. Optimizing ontology alignment through compact MOEA/D[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(04): 1759004. (SCI四区)
[18] Wang J, Liu J, Pan J S, et al. A Hybrid BPSO-GA Algorithm for 0-1 Knapsack Problems[C]//The Euro-China Conference on Intelligent Data Analysis and Applications. Springer, Cham, 2017: 344-351.
[19] Liu J, Mei Y, Li X. An analysis of the inertia weight parameter for binary particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 666-681. (SCI一区,top期刊)
[20] Xue X, Liu J, Tsai P W, et al. Optimizing ontology alignment by using compact genetic algorithm[C]//2015 11th International Conference on Computational Intelligence and Security (CIS). IEEE, 2015: 231-234.
[21] Liu J, Zheng S, Tan Y. Analysis on global convergence and time complexity of fireworks algorithm[C]//2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014: 3207-3213.
[22] Liu J, Zheng S, Tan Y. The improvement on controlling exploration and exploitation of firework algorithm[C]//International Conference in Swarm Intelligence. Springer, Berlin, Heidelberg, 2013: 11-23.
[23] Liu J, Fan X. The analysis and improvement of binary particle swarm optimization[C]//2009 International Conference on Computational Intelligence and Security. IEEE, 2009, 1: 254-258.
[24] Liu J, Fan X, Qu Z. A new interestingness measure of association rules[C]//2008 Second International Conference on Genetic and Evolutionary Computing. IEEE, 2008: 393-397.
[25] Liu J, Fan X, Qu Z. An improved particle swarm optimization with mutation based on similarity[C]//Third International Conference on Natural Computation (ICNC 2007). IEEE, 2007, 4: 824-828.
· 中文论文
[1] 蔡子杰,方荟,刘建华,等. 基于大型语言模型指令微调的心理健康领域联合信息抽取 [J]. 中文信 息学报, 2024, 38 (08): 112-127.
[2] 力尚龙,刘建华,贾鹤鸣. 融合多狩猎协调策略的爬行动物搜索算法 [J/OL]. 计算机应用, 1- 15[2024-08-14].
[3] 陈治铭,刘建华,柯添赐,等. 一种对抗性的权重注意力机制Seq2Seq模型估算SOC [J/OL]. 电工技术学报, 1-12[2024-08-14].
[4] 柯添赐, 刘建华, 孙水华, 郑智雄, 蔡子杰. 融合强关联依赖和简洁语法的方面级情感分析模型[J]. 计算机应用, 2024, 44 (06): 1786-1795.
[5] 陈林颖, 刘建华, 郑智雄, 林杰, 徐戈, 孙水华. 多特征交互的方面情感三元组提取[J]. 计算机科学与探索, 2024, 18 (04): 1057-1067.
[6] 林杰,刘建华,陈林颖,等. 融合多窗口特征的词对标记情感三元组抽取 [J/OL]. 计算机工程与应用, 1-12[2024-08-14].
[7] 郑智雄,刘建华,孙水华,等. 融合多窗口局部信息的方面级情感分析模型 [J]. 计算机应用, 2023, 43(06): 1796-1802.
[8] 张智源,孙水华,徐诗傲,刘建华. 基于BERT和多窗口门控CNN的电机领域命名实体识别 [J]. 计算机应用研究, 2023, 40(01): 107-114.
[9] 李东升,鲍玉来,刘建华,等. 基于BERT的高校图书馆微信信息服务的命名实体识别方法 [J]. 现代情报, 2023, 43(04): 64-76.
[10] 王子航,刘建华,薛醒思,等. 融合迭代和问题维度的速度约束粒子群算法 [J]. 华东交通大学学报, 2023, 40(04): 112-126.
[11] 卜冠南 ,刘建华 ,张冬阳 ,等. 改进并行蚁群算法在配电网网架优化中的应用 [J]. 计算机应用与软件, 2023, 40(09): 73-77.
[12] 陈林颖,刘建华,孙水华, 郑智雄,林鸿辉,林杰. 面向方面的自适应跨度特征的细粒度意见元组提取 [J]. 计算机应用, 2023, 43(05): 1454-1460
[13] 郑智雄, 刘建华, 孙水华, 林鸿辉, 徐戈. 面向方面级情感分析的交互关系图注意力网络[J]. 计算机工程与应用, 2023, 59(15): 187-195.
[14] 林鸿辉,刘建华,郑智雄,等. 联合对话行为识别与情感分类的多任务网络 [J]. 计算机工程与应用, 2023,59(03): 104-111.
[15] 胡任远,刘建华,王璇,罗逸轩,林鸿辉.引入双循环机制深度学习模型的文本情感分析[J].福建工程学院学报,2022,20(04):383-390.
[16] 罗逸轩, 刘建华, 胡任远, 张冬阳, 卜冠南. 融合经验共享Q学习的粒子群优化算法[J]. 计算机科学与探索, 2022, 16(09): 2151-2162.
[17] 姜磊,刘建华,张冬阳,卜冠南.二进制粒子群算法中V型转换函数的应用分析[J].计算机应用与软件,2021,38(04):263-270.
[18] 胡任远,刘建华,卜冠南,张冬阳,罗逸轩.融合BERT的多层次语义协同模型情感分析研究[J].计算机工程与应用,2021,57(13):176-184.
[19] 卜冠南, 刘建华, 姜磊, 张冬阳. 一种自适应分组的蚁群算法[J]. 计算机工程与应用, 2021, 57 (06): 67-73.
[20] 姜磊,刘建华,张冬阳,卜冠南.一种自适应变异二进制粒子群算法[J].福建工程学院学报,2020,18(03):273-279.
[21] 何尧,刘建华,杨荣华.人工蜂群算法研究综述[J].计算机应用研究, 2018,35(05):1281-1286.
[22] 刘国买,戴小廷,刘建华,周理.隧道施工安全管理与定位系统的设计和实现[J].武汉理工大学学报(信息与管理工程版),2014,36(02):163-166.
[23] 刘建华,张永晖,周理,贺文武.一种权重递增的粒子群算法[J].计算机科学,2014,41(03):59-65+84.
[24] 刘建华.相空间重构和SVR联合优化的短时交通流预测[J].计算机工程与应用, 2014, 50(03):13-17.
[25] 刘建华,冯嘉礼,刘国买.一种新的决策评价模型及其变权分析[J].福建工程学院学报, 2013, 11(04):400-404.
[26] 胡文瑜,刘建华,张柏礼.近似聚集查询中Congressional Samples算法的优化研究[J].数学的实践与认识,2013,43(08):160-169.
[27] 张永晖,林漳希,刘建华,梁泉. 用于多宿容迟移动网络的实时资源分配算法[J].微电子学与计算机,2013,30(03):93-96+101.
[28] 张永晖,林漳希,刘建华,梁泉. 容迟网络广义k选播路由资源分配模型[J].计算机应用,2012,32(12):3494-3498+3504.
[29] 张永晖,林漳希,刘建华,梁泉.基于位置信息的仓储容迟网络路由算法[J].电信科学, 2012, 28(11):81-85.
[30] 张永晖,林漳希,刘建华,梁泉.基于AAA认证的仓储移动网络安全关联转移方案[J].通信学报,2012,33(S1):186-191+200.
[31] 刘建华,刘国买,杨荣华,胡文瑜.粒子群算法的交互性与随机性分析[J].自动化学报, 2012, 38(09):1471-1484.
[32] 杨荣华,刘建华.量子粒子群算法求解整数规划的方法[J].科学技术与工程, 2011,11(33): 8195-8198+8202.
[33] 刘建华,杨荣华,孙水华. 离散二进制粒子群算法分析[J]. 南京大学学报(自然科学版), 2011, 47(05): 504-514.
[34] 杨荣华,刘建华. 基于粒子群算法求解整数规划的改进方法[J]. 福建工程学院学报, 2011, 9(04): 347-350.
[35] 孙水华,刘建华,林志强.基于数据质量控制的ETL[J].福建工程学院学报, 2011,9(04):363-366.
[36] 刘建华,黄添强,严晓明.融合PSO算法思想的进化算法[J].山东大学学报(工学版), 2010, 40(05):34-40.
[37] 刘建华,樊晓平,瞿志华.一种基于相似度的新型粒子群算法[J].控制与决策,2007(10):1155-1159.
[38] 刘建华,刘建伟.基于粒子群算法的城市单交叉口信号控制[J].系统工程,2007(07):83-87.
[39] 刘建华,樊晓平,瞿志华.一种惯性权重动态调整的新型粒子群算法[J].计算机工程与应用, 2007(07):68-70.
[40] 刘建华.多元最优信息分组延迟粒子群算法[J].现代电子技术,2007(04):83-85.
[41] 刘建华.根据用户行为模式自动生成动态链接的方法[J].福建师范大学学报(自然科学版),2004(04):32-34.
[43] 刘建华.关联规则挖掘的新模型[J].福建师范大学学报(自然科学版), 2004 (02): 32-35.
[44] 刘建华.从数据中挖掘知识[J].福建师范大学学报(自然科学版), 2001(04): 113-117.
教学论文
[1] 唐郑熠,胡文瑜,刘建华.应用技术大学数学基础课程的教学改革探索——以计算机类专业为例[J].福建电脑,2016,32(10):41-43+91.
[2] 贺文武,刘国买,刘建华.新工科专业育人共同体与学习共同体构建研究——以数据科学与大数据技术为例[J].教育评论,2018(08):46-51.
[3] 刘建华,胡文瑜,唐郑熠,林芳.数据科学与大数据技术专业课程体系探索[J].科教文汇(中旬刊),2021(01):115-116.
n 授予专利与软著
[1] 刘建华, 刘建华,刘国买,胡文瑜,聂作先,周理. 一种应用时间序列信号的RFID定位方法[P]. 公开号:CN105445700A,2016-03-30.(已授权:时间2018-03-09; 专利号:ZL 2015 1 0824196.0)
[2] 刘国买,刘建华,周理,胡文瑜,薛醒思. 隧道里基于RFID功率发射档识别自适用测距方法[P]. 公开号:CN105929387B,2016-09-07.(已授权:时间2018-12-07; 专利号:ZL 2016 1 0355571.6)
[3] 刘建华,刘国买,周理等. 基于RFID功率变档测距的定位系统,软件著作权,登记号:2016SR114155,时间:2016-04-10,
主要获奖
l 第十一届福建省自然科学优秀学术论文奖三等奖,2014.08 粒子群算法的随机性与交互性分析, 福建省科技协会,排名1
l 第十三届福建省自然科学优秀学术论文,三等奖,2018.08, An Analysis of the Inertia Weight Parameter for Binary Particle Swarm Optimization,福建省科技协会,排名1
l 2020年福建省级教学成果奖,二等奖. 二依托、 四举措 、六转变--应用型本科电类学生实践能力培养模式创新与实施;李天建、李建兴、蔡志明、黄靖、钟宏景、马莹、刘建华、陈岚岚;(闽教师〔2020〕24号)2020.12.21
n 教学教改项目
[1] 基于利益共同点的多种产教融合模式研究与探索,福建省教学教研改革项目, 2019.6-2021.6,项目编号: FBJG20190173,2019.6-2021.6, 3万元,闽教办高〔2019〕6号,主持;
[2] 新工科校企合作机制模式探索与实践,2020年省级新工科研究与改革实践项目,闽教高[2020]4号,主持
[3] 教育部2020年第二批产学合作协同育人项目(支持公司:北京中软国际信息技术有限公司),实践条件和实践基地建设,项目编号:202101091017,,2021.9-2022.8
[4] 教育部2017年第一批产学合作协同育人项目(支持公司:福建中锐网络股份有限公司),《数据科学导论》课程教学资源开发,项目编号:201701019002,2017.8-2018.12,3万,教高司函〔2017〕37号,主持人
[5] 福建工程学院案例库建设项目,大数据分析技术案例库,JXKA18014,2018.1-2020.1,3万元, 闽工院〔2018〕教1号,主持
[6] 福建工程学院教学研究项目,数据科学与大数据技术专业建设方案研究,0.5万元,GB-SC-17-07 2017-9-2018.12 主持,闽工院[2017]高教15号。
n 教学课程
l 主要本科生授课课程:《软件工程》、《算法与数据结构》、《Java程序设计》、《数据库原理与应用》、《人工智能基础》、《面向对象程序设计》
l 研究生授课程:《智能计算及其应用》、《算法分析与设计》