![]() |
个人信息Personal Information
副教授
博士生导师
硕士生导师
教师英文名称:Chia-Hung Wang
教师拼音名称:ChiaHung Wang
所在单位:计算机科学与数学学院
职务:副教授
学历:研究生(博士后)
办公地点:计算机科学与数学学院计算机科学与技术教研室
联系方式:校址:福建省福州市闽侯县上街镇学府南路69号福建理工大学 (邮编: 350118) 教师主页: http://faculty.fjut.edu.cn/wang_chiahung/zh_CN/index.htm ResearchGate Website: https://www.researchgate.net/profile/Chia-Hung_Wang2
学位:博士学位
在职信息:在职
主要任职:副教授
其他任职:研究生导师
毕业院校:(中国台湾)政治大学
学科:计算机科学与技术
电子信息工程
交通运输
信息与计算科学
数据科学与大数据技术
论文成果
当前位置: 王嘉宏博士(Chia-Hung Wang, Ph.D.)中文主页 >> 科学研究 >> 论文成果A Solution to the Job Shop Scheduling Problem based on an Enhanced Slime Mould Algorithm
点击次数:
DOI码:10.1504/IJCSM.2025.148202
发表刊物:International Journal of Computing Science and Mathematics
关键字:JSSP; job shop scheduling problem; slime mould algorithm; OBL; opposition-based learning; metaheuristic; scheduling optimisation.
摘要:The job shop scheduling problem (JSSP) is a complex optimisation challenge with broad industrial applications. This study introduces an enhanced slime mould algorithm (ESMA), designed to effectively tackle JSSP. ESMA integrates opposition-based learning (OBL) and non-linear inertia weight strategies to improve both exploration and exploitation. Benchmark evaluations demonstrate ESMA's superior performance, achieving up to a 3.36% improvement in average makespan for small-scale problems and a 15.56% reduction in makespan for large-scale instances compared to traditional and metaheuristic approaches. These results confirm ESMA's strong global search capabilities as a powerful solution to JSSP.
论文类型:期刊论文
学科门类:交叉学科
文献类型:J
卷号:21
期号:4
页面范围:289-302
ISSN号:1752-5063
是否译文:否
发表时间:2025-08-28
收录刊物:EI
发布期刊链接:https://www.inderscience.com/info/inarticle.php?artid=148202
第一作者:Trong-The Nguyen
合写作者:Yingping Zeng,Jinchen Yuan,Thi-Kien Dao
通讯作者:Chia-Hung Wang
上一条:Stock conditional drawdown at risk portfolio optimization based on gated bidirectional temporal convolution and discrete cosine graph neural networks on hypervariable graphs
下一条:Significant wave height prediction at multiple sites using sequence decomposition and dynamic spatiotemporal graph neural networks